opentps.core.processing.planEvaluation package
Submodules
opentps.core.processing.planEvaluation.robustnessEvaluation module
- class Robustness
Bases:
object
This class is used to compute the robustness of a plan.
- Variables:
selectionStrategy (str) – The selection strategy used to select the scenarios. It can be “DISABLED”, “ERRORSPACE_REGULAR”, “ERRORSPACE_STAT” or “DOSIMETRIC”.
setupSystematicError (list (default = [1.6, 1.6, 1.6])) – The setup systematic error in mm.
setupRandomError (list (default = [1.4, 1.4, 1.4])) – The setup random error in mm.
rangeSystematicError (float (default = 1.6)) – The range systematic error in %.
target (ROIContour) – The target contour.
targetPrescription (float (default = 60)) – The target prescription in Gy.
nominal (RobustnessScenario) – The nominal scenario.
numScenarios (int) – The number of scenarios.
scenarios (list) – The list of scenarios.
dvhBands (list) – The list of DVH bands.
doseDistributionType (str) – The dose distribution type. It can be “Nominal”, “Voxel wise minimum” or “Voxel wise maximum”.
doseDistribution (list[DoseImage]) – The dose distributions.
- class Strategies(value)
Bases:
Enum
An enumeration.
- DEFAULT = 'DISABLED'
- DISABLED = 'DISABLED'
- DOSIMETRIC = 'DOSIMETRIC'
- ERRORSPACE_REGULAR = 'ERRORSPACE_REGULAR'
- ERRORSPACE_STAT = 'ERRORSPACE_STAT'
- addScenario(dose: DoseImage, contours: ROIContour | ROIMask)
Add a scenario.
- Parameters:
dose (DoseImage) – The dose image.
contours (list[ROIContour]) – The list of contours.
- analyzeDosimetricSpace(metric, CI, targetContour, targetPrescription)
Analyze the dosimetric space by sorting the scenarios from worst to best according to selected metric and compute the DVH-band.
- Parameters:
metric (str) – The metric used to sort the scenarios. It can be “D95” or “MSE”.
CI (float) – The confidence interval in %.
targetContour (ROIContour) – The target contour.
targetPrescription (float) – The target prescription in Gy.
- analyzeErrorSpace(ct, metric, targetContour, targetPrescription)
Analyze the error space by sorting the scenarios from worst to best according to selected metric and compute the DVH-band.
- Parameters:
ct (CTImage) – The CT image.
metric (str) – The metric used to sort the scenarios. It can be “D95” or “MSE”.
targetContour (ROIContour) – The target contour.
targetPrescription (float) – The target prescription in Gy.
- computeTargetMSE(dose)
Compute the target mean square error.
- Parameters:
dose (DoseImage) – The dose image.
- Returns:
The target mean square error.
- Return type:
float
- load(folder_path)
Load the different scenarios and the robustness test.
- Parameters:
folder_path (str) – The folder path.
- printInfo()
Print the information of the robustness evaluation.
- recomputeDVH(contours)
Recompute the DVH.
- Parameters:
contours (list[ROIContour]) – The list of contours.
- save(folder_path)
Save the different scenarios and the robustness test.
- Parameters:
folder_path (str) – The folder path.
- setNominal(dose: DoseImage, contours: ROIContour | ROIMask)
Set the nominal scenario.
- Parameters:
dose (DoseImage) – The dose image.
contours (list[ROIContour]) – The list of contours.
- setTarget(ct, target, targetPrescription)
Set the target contour.
- Parameters:
ct (CTImage) – The CT image.
target (ROIContour) – The target contour.
targetPrescription (float) – The target prescription in Gy.
- class RobustnessScenario
Bases:
object
This class is used to store the information of a scenario.
- Variables:
- load(file_path)
Load the scenario.
- Parameters:
file_path (str) – The file path.
- printInfo()
Print the information of the scenario.
- save(file_path)
Save the scenario.
- Parameters:
file_path (str) – The file path.