opentps.core.processing.planEvaluation package

Submodules

opentps.core.processing.planEvaluation.robustnessEvaluation module

class Robustness

Bases: object

This class is used to compute the robustness of a plan.

Variables:
  • selectionStrategy (str) – The selection strategy used to select the scenarios. It can be “DISABLED”, “ERRORSPACE_REGULAR”, “ERRORSPACE_STAT” or “DOSIMETRIC”.

  • setupSystematicError (list (default = [1.6, 1.6, 1.6])) – The setup systematic error in mm.

  • setupRandomError (list (default = [1.4, 1.4, 1.4])) – The setup random error in mm.

  • rangeSystematicError (float (default = 1.6)) – The range systematic error in %.

  • target (ROIContour) – The target contour.

  • targetPrescription (float (default = 60)) – The target prescription in Gy.

  • nominal (RobustnessScenario) – The nominal scenario.

  • numScenarios (int) – The number of scenarios.

  • scenarios (list) – The list of scenarios.

  • dvhBands (list) – The list of DVH bands.

  • doseDistributionType (str) – The dose distribution type. It can be “Nominal”, “Voxel wise minimum” or “Voxel wise maximum”.

  • doseDistribution (list[DoseImage]) – The dose distributions.

class Strategies(value)

Bases: Enum

An enumeration.

DEFAULT = 'DISABLED'
DISABLED = 'DISABLED'
DOSIMETRIC = 'DOSIMETRIC'
ERRORSPACE_REGULAR = 'ERRORSPACE_REGULAR'
ERRORSPACE_STAT = 'ERRORSPACE_STAT'
addScenario(dose: DoseImage, contours: ROIContour | ROIMask)

Add a scenario.

Parameters:
  • dose (DoseImage) – The dose image.

  • contours (list[ROIContour]) – The list of contours.

analyzeDosimetricSpace(metric, CI, targetContour, targetPrescription)

Analyze the dosimetric space by sorting the scenarios from worst to best according to selected metric and compute the DVH-band.

Parameters:
  • metric (str) – The metric used to sort the scenarios. It can be “D95” or “MSE”.

  • CI (float) – The confidence interval in %.

  • targetContour (ROIContour) – The target contour.

  • targetPrescription (float) – The target prescription in Gy.

analyzeErrorSpace(ct, metric, targetContour, targetPrescription)

Analyze the error space by sorting the scenarios from worst to best according to selected metric and compute the DVH-band.

Parameters:
  • ct (CTImage) – The CT image.

  • metric (str) – The metric used to sort the scenarios. It can be “D95” or “MSE”.

  • targetContour (ROIContour) – The target contour.

  • targetPrescription (float) – The target prescription in Gy.

computeTargetMSE(dose)

Compute the target mean square error.

Parameters:

dose (DoseImage) – The dose image.

Returns:

The target mean square error.

Return type:

float

load(folder_path)

Load the different scenarios and the robustness test.

Parameters:

folder_path (str) – The folder path.

printInfo()

Print the information of the robustness evaluation.

recomputeDVH(contours)

Recompute the DVH.

Parameters:

contours (list[ROIContour]) – The list of contours.

save(folder_path)

Save the different scenarios and the robustness test.

Parameters:

folder_path (str) – The folder path.

setNominal(dose: DoseImage, contours: ROIContour | ROIMask)

Set the nominal scenario.

Parameters:
  • dose (DoseImage) – The dose image.

  • contours (list[ROIContour]) – The list of contours.

setTarget(ct, target, targetPrescription)

Set the target contour.

Parameters:
  • ct (CTImage) – The CT image.

  • target (ROIContour) – The target contour.

  • targetPrescription (float) – The target prescription in Gy.

class RobustnessScenario

Bases: object

This class is used to store the information of a scenario.

Variables:
  • dose (DoseImage) – The dose image.

  • dvh (list[DVH]) – The list of DVH.

  • targetD95 (float) – The target D95.

  • targetD5 (float) – The target D5.

  • targetMSE (float) – The target mean square error.

  • selected (int) – 1 if the scenario is selected, 0 otherwise.

load(file_path)

Load the scenario.

Parameters:

file_path (str) – The file path.

printInfo()

Print the information of the scenario.

save(file_path)

Save the scenario.

Parameters:

file_path (str) – The file path.

Module contents