opentps.core.processing.planEvaluation package
Submodules
opentps.core.processing.planEvaluation.robustnessEvaluation module
- class Robustness
- Bases: - object- This class is used to compute the robustness of a plan. - Variables:
- selectionStrategy (str) – The selection strategy used to select the scenarios. It can be “DISABLED”, “ERRORSPACE_REGULAR”, “ERRORSPACE_STAT” or “DOSIMETRIC”. 
- setupSystematicError (list (default = [1.6, 1.6, 1.6])) – The setup systematic error in mm. 
- setupRandomError (list (default = [1.4, 1.4, 1.4])) – The setup random error in mm. 
- rangeSystematicError (float (default = 1.6)) – The range systematic error in %. 
- target (ROIContour) – The target contour. 
- targetPrescription (float (default = 60)) – The target prescription in Gy. 
- nominal (RobustnessScenario) – The nominal scenario. 
- numScenarios (int) – The number of scenarios. 
- scenarios (list) – The list of scenarios. 
- dvhBands (list) – The list of DVH bands. 
- doseDistributionType (str) – The dose distribution type. It can be “Nominal”, “Voxel wise minimum” or “Voxel wise maximum”. 
- doseDistribution (list[DoseImage]) – The dose distributions. 
 
 - class Strategies(value)
- Bases: - Enum- An enumeration. - DEFAULT = 'DISABLED'
 - DISABLED = 'DISABLED'
 - DOSIMETRIC = 'DOSIMETRIC'
 - ERRORSPACE_REGULAR = 'ERRORSPACE_REGULAR'
 - ERRORSPACE_STAT = 'ERRORSPACE_STAT'
 
 - addScenario(dose: DoseImage, contours: ROIContour | ROIMask)
- Add a scenario. - Parameters:
- dose (DoseImage) – The dose image. 
- contours (list[ROIContour]) – The list of contours. 
 
 
 - analyzeDosimetricSpace(metric, CI, targetContour, targetPrescription)
- Analyze the dosimetric space by sorting the scenarios from worst to best according to selected metric and compute the DVH-band. - Parameters:
- metric (str) – The metric used to sort the scenarios. It can be “D95” or “MSE”. 
- CI (float) – The confidence interval in %. 
- targetContour (ROIContour) – The target contour. 
- targetPrescription (float) – The target prescription in Gy. 
 
 
 - analyzeErrorSpace(ct, metric, targetContour, targetPrescription)
- Analyze the error space by sorting the scenarios from worst to best according to selected metric and compute the DVH-band. - Parameters:
- ct (CTImage) – The CT image. 
- metric (str) – The metric used to sort the scenarios. It can be “D95” or “MSE”. 
- targetContour (ROIContour) – The target contour. 
- targetPrescription (float) – The target prescription in Gy. 
 
 
 - computeTargetMSE(dose)
- Compute the target mean square error. - Parameters:
- dose (DoseImage) – The dose image. 
- Returns:
- The target mean square error. 
- Return type:
- float 
 
 - load(folder_path)
- Load the different scenarios and the robustness test. - Parameters:
- folder_path (str) – The folder path. 
 
 - printInfo()
- Print the information of the robustness evaluation. 
 - recomputeDVH(contours)
- Recompute the DVH. - Parameters:
- contours (list[ROIContour]) – The list of contours. 
 
 - save(folder_path)
- Save the different scenarios and the robustness test. - Parameters:
- folder_path (str) – The folder path. 
 
 - setNominal(dose: DoseImage, contours: ROIContour | ROIMask)
- Set the nominal scenario. - Parameters:
- dose (DoseImage) – The dose image. 
- contours (list[ROIContour]) – The list of contours. 
 
 
 - setTarget(ct, target, targetPrescription)
- Set the target contour. - Parameters:
- ct (CTImage) – The CT image. 
- target (ROIContour) – The target contour. 
- targetPrescription (float) – The target prescription in Gy. 
 
 
 
- class RobustnessScenario
- Bases: - object- This class is used to store the information of a scenario. - Variables:
 - load(file_path)
- Load the scenario. - Parameters:
- file_path (str) – The file path. 
 
 - printInfo()
- Print the information of the scenario. 
 - save(file_path)
- Save the scenario. - Parameters:
- file_path (str) – The file path.